3.446 \(\int \tan ^2(c+d x) (a+b \tan (c+d x))^4 \, dx\)

Optimal. Leaf size=128 \[ -\frac{b^2 \left (3 a^2-b^2\right ) \tan (c+d x)}{d}+\frac{4 a b \left (a^2-b^2\right ) \log (\cos (c+d x))}{d}-x \left (-6 a^2 b^2+a^4+b^4\right )+\frac{(a+b \tan (c+d x))^5}{5 b d}-\frac{b (a+b \tan (c+d x))^3}{3 d}-\frac{a b (a+b \tan (c+d x))^2}{d} \]

[Out]

-((a^4 - 6*a^2*b^2 + b^4)*x) + (4*a*b*(a^2 - b^2)*Log[Cos[c + d*x]])/d - (b^2*(3*a^2 - b^2)*Tan[c + d*x])/d -
(a*b*(a + b*Tan[c + d*x])^2)/d - (b*(a + b*Tan[c + d*x])^3)/(3*d) + (a + b*Tan[c + d*x])^5/(5*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.140822, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3543, 3482, 3528, 3525, 3475} \[ -\frac{b^2 \left (3 a^2-b^2\right ) \tan (c+d x)}{d}+\frac{4 a b \left (a^2-b^2\right ) \log (\cos (c+d x))}{d}-x \left (-6 a^2 b^2+a^4+b^4\right )+\frac{(a+b \tan (c+d x))^5}{5 b d}-\frac{b (a+b \tan (c+d x))^3}{3 d}-\frac{a b (a+b \tan (c+d x))^2}{d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2*(a + b*Tan[c + d*x])^4,x]

[Out]

-((a^4 - 6*a^2*b^2 + b^4)*x) + (4*a*b*(a^2 - b^2)*Log[Cos[c + d*x]])/d - (b^2*(3*a^2 - b^2)*Tan[c + d*x])/d -
(a*b*(a + b*Tan[c + d*x])^2)/d - (b*(a + b*Tan[c + d*x])^3)/(3*d) + (a + b*Tan[c + d*x])^5/(5*b*d)

Rule 3543

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(d^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
 + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1] &&  !(EqQ[m, 2] && EqQ
[a, 0])

Rule 3482

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a + b*Tan[c + d*x])^(n - 1))/(d*(n - 1)
), x] + Int[(a^2 - b^2 + 2*a*b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ
[a^2 + b^2, 0] && GtQ[n, 1]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3525

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c - b
*d)*x, x] + (Dist[b*c + a*d, Int[Tan[e + f*x], x], x] + Simp[(b*d*Tan[e + f*x])/f, x]) /; FreeQ[{a, b, c, d, e
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \tan ^2(c+d x) (a+b \tan (c+d x))^4 \, dx &=\frac{(a+b \tan (c+d x))^5}{5 b d}-\int (a+b \tan (c+d x))^4 \, dx\\ &=-\frac{b (a+b \tan (c+d x))^3}{3 d}+\frac{(a+b \tan (c+d x))^5}{5 b d}-\int (a+b \tan (c+d x))^2 \left (a^2-b^2+2 a b \tan (c+d x)\right ) \, dx\\ &=-\frac{a b (a+b \tan (c+d x))^2}{d}-\frac{b (a+b \tan (c+d x))^3}{3 d}+\frac{(a+b \tan (c+d x))^5}{5 b d}-\int (a+b \tan (c+d x)) \left (a \left (a^2-3 b^2\right )+b \left (3 a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=-\left (a^4-6 a^2 b^2+b^4\right ) x-\frac{b^2 \left (3 a^2-b^2\right ) \tan (c+d x)}{d}-\frac{a b (a+b \tan (c+d x))^2}{d}-\frac{b (a+b \tan (c+d x))^3}{3 d}+\frac{(a+b \tan (c+d x))^5}{5 b d}-\left (4 a b \left (a^2-b^2\right )\right ) \int \tan (c+d x) \, dx\\ &=-\left (a^4-6 a^2 b^2+b^4\right ) x+\frac{4 a b \left (a^2-b^2\right ) \log (\cos (c+d x))}{d}-\frac{b^2 \left (3 a^2-b^2\right ) \tan (c+d x)}{d}-\frac{a b (a+b \tan (c+d x))^2}{d}-\frac{b (a+b \tan (c+d x))^3}{3 d}+\frac{(a+b \tan (c+d x))^5}{5 b d}\\ \end{align*}

Mathematica [C]  time = 0.686739, size = 122, normalized size = 0.95 \[ \frac{30 b^2 \left (b^2-6 a^2\right ) \tan (c+d x)-60 a b^3 \tan ^2(c+d x)+\frac{6 (a+b \tan (c+d x))^5}{b}+15 i (a+i b)^4 \log (-\tan (c+d x)+i)-15 i (a-i b)^4 \log (\tan (c+d x)+i)-10 b^4 \tan ^3(c+d x)}{30 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^2*(a + b*Tan[c + d*x])^4,x]

[Out]

((15*I)*(a + I*b)^4*Log[I - Tan[c + d*x]] - (15*I)*(a - I*b)^4*Log[I + Tan[c + d*x]] + 30*b^2*(-6*a^2 + b^2)*T
an[c + d*x] - 60*a*b^3*Tan[c + d*x]^2 - 10*b^4*Tan[c + d*x]^3 + (6*(a + b*Tan[c + d*x])^5)/b)/(30*d)

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 234, normalized size = 1.8 \begin{align*}{\frac{{b}^{4} \left ( \tan \left ( dx+c \right ) \right ) ^{5}}{5\,d}}+{\frac{{b}^{3}a \left ( \tan \left ( dx+c \right ) \right ) ^{4}}{d}}+2\,{\frac{{a}^{2}{b}^{2} \left ( \tan \left ( dx+c \right ) \right ) ^{3}}{d}}-{\frac{ \left ( \tan \left ( dx+c \right ) \right ) ^{3}{b}^{4}}{3\,d}}+2\,{\frac{b{a}^{3} \left ( \tan \left ( dx+c \right ) \right ) ^{2}}{d}}-2\,{\frac{{b}^{3}a \left ( \tan \left ( dx+c \right ) \right ) ^{2}}{d}}+{\frac{{a}^{4}\tan \left ( dx+c \right ) }{d}}-6\,{\frac{{a}^{2}{b}^{2}\tan \left ( dx+c \right ) }{d}}+{\frac{{b}^{4}\tan \left ( dx+c \right ) }{d}}-2\,{\frac{\ln \left ( 1+ \left ( \tan \left ( dx+c \right ) \right ) ^{2} \right ){a}^{3}b}{d}}+2\,{\frac{\ln \left ( 1+ \left ( \tan \left ( dx+c \right ) \right ) ^{2} \right ) a{b}^{3}}{d}}-{\frac{{a}^{4}\arctan \left ( \tan \left ( dx+c \right ) \right ) }{d}}+6\,{\frac{\arctan \left ( \tan \left ( dx+c \right ) \right ){a}^{2}{b}^{2}}{d}}-{\frac{\arctan \left ( \tan \left ( dx+c \right ) \right ){b}^{4}}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2*(a+b*tan(d*x+c))^4,x)

[Out]

1/5/d*b^4*tan(d*x+c)^5+1/d*b^3*a*tan(d*x+c)^4+2/d*a^2*b^2*tan(d*x+c)^3-1/3/d*tan(d*x+c)^3*b^4+2/d*b*a^3*tan(d*
x+c)^2-2/d*b^3*a*tan(d*x+c)^2+a^4*tan(d*x+c)/d-6*a^2*b^2*tan(d*x+c)/d+1/d*b^4*tan(d*x+c)-2/d*ln(1+tan(d*x+c)^2
)*a^3*b+2/d*ln(1+tan(d*x+c)^2)*a*b^3-1/d*a^4*arctan(tan(d*x+c))+6/d*arctan(tan(d*x+c))*a^2*b^2-1/d*arctan(tan(
d*x+c))*b^4

________________________________________________________________________________________

Maxima [A]  time = 1.59997, size = 201, normalized size = 1.57 \begin{align*} \frac{3 \, b^{4} \tan \left (d x + c\right )^{5} + 15 \, a b^{3} \tan \left (d x + c\right )^{4} + 5 \,{\left (6 \, a^{2} b^{2} - b^{4}\right )} \tan \left (d x + c\right )^{3} + 30 \,{\left (a^{3} b - a b^{3}\right )} \tan \left (d x + c\right )^{2} - 15 \,{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )}{\left (d x + c\right )} - 30 \,{\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 15 \,{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \tan \left (d x + c\right )}{15 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2*(a+b*tan(d*x+c))^4,x, algorithm="maxima")

[Out]

1/15*(3*b^4*tan(d*x + c)^5 + 15*a*b^3*tan(d*x + c)^4 + 5*(6*a^2*b^2 - b^4)*tan(d*x + c)^3 + 30*(a^3*b - a*b^3)
*tan(d*x + c)^2 - 15*(a^4 - 6*a^2*b^2 + b^4)*(d*x + c) - 30*(a^3*b - a*b^3)*log(tan(d*x + c)^2 + 1) + 15*(a^4
- 6*a^2*b^2 + b^4)*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 2.03277, size = 343, normalized size = 2.68 \begin{align*} \frac{3 \, b^{4} \tan \left (d x + c\right )^{5} + 15 \, a b^{3} \tan \left (d x + c\right )^{4} + 5 \,{\left (6 \, a^{2} b^{2} - b^{4}\right )} \tan \left (d x + c\right )^{3} - 15 \,{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} d x + 30 \,{\left (a^{3} b - a b^{3}\right )} \tan \left (d x + c\right )^{2} + 30 \,{\left (a^{3} b - a b^{3}\right )} \log \left (\frac{1}{\tan \left (d x + c\right )^{2} + 1}\right ) + 15 \,{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \tan \left (d x + c\right )}{15 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2*(a+b*tan(d*x+c))^4,x, algorithm="fricas")

[Out]

1/15*(3*b^4*tan(d*x + c)^5 + 15*a*b^3*tan(d*x + c)^4 + 5*(6*a^2*b^2 - b^4)*tan(d*x + c)^3 - 15*(a^4 - 6*a^2*b^
2 + b^4)*d*x + 30*(a^3*b - a*b^3)*tan(d*x + c)^2 + 30*(a^3*b - a*b^3)*log(1/(tan(d*x + c)^2 + 1)) + 15*(a^4 -
6*a^2*b^2 + b^4)*tan(d*x + c))/d

________________________________________________________________________________________

Sympy [A]  time = 0.973401, size = 214, normalized size = 1.67 \begin{align*} \begin{cases} - a^{4} x + \frac{a^{4} \tan{\left (c + d x \right )}}{d} - \frac{2 a^{3} b \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{d} + \frac{2 a^{3} b \tan ^{2}{\left (c + d x \right )}}{d} + 6 a^{2} b^{2} x + \frac{2 a^{2} b^{2} \tan ^{3}{\left (c + d x \right )}}{d} - \frac{6 a^{2} b^{2} \tan{\left (c + d x \right )}}{d} + \frac{2 a b^{3} \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{d} + \frac{a b^{3} \tan ^{4}{\left (c + d x \right )}}{d} - \frac{2 a b^{3} \tan ^{2}{\left (c + d x \right )}}{d} - b^{4} x + \frac{b^{4} \tan ^{5}{\left (c + d x \right )}}{5 d} - \frac{b^{4} \tan ^{3}{\left (c + d x \right )}}{3 d} + \frac{b^{4} \tan{\left (c + d x \right )}}{d} & \text{for}\: d \neq 0 \\x \left (a + b \tan{\left (c \right )}\right )^{4} \tan ^{2}{\left (c \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2*(a+b*tan(d*x+c))**4,x)

[Out]

Piecewise((-a**4*x + a**4*tan(c + d*x)/d - 2*a**3*b*log(tan(c + d*x)**2 + 1)/d + 2*a**3*b*tan(c + d*x)**2/d +
6*a**2*b**2*x + 2*a**2*b**2*tan(c + d*x)**3/d - 6*a**2*b**2*tan(c + d*x)/d + 2*a*b**3*log(tan(c + d*x)**2 + 1)
/d + a*b**3*tan(c + d*x)**4/d - 2*a*b**3*tan(c + d*x)**2/d - b**4*x + b**4*tan(c + d*x)**5/(5*d) - b**4*tan(c
+ d*x)**3/(3*d) + b**4*tan(c + d*x)/d, Ne(d, 0)), (x*(a + b*tan(c))**4*tan(c)**2, True))

________________________________________________________________________________________

Giac [B]  time = 7.20277, size = 3079, normalized size = 24.05 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2*(a+b*tan(d*x+c))^4,x, algorithm="giac")

[Out]

-1/15*(15*a^4*d*x*tan(d*x)^5*tan(c)^5 - 90*a^2*b^2*d*x*tan(d*x)^5*tan(c)^5 + 15*b^4*d*x*tan(d*x)^5*tan(c)^5 -
30*a^3*b*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 -
2*tan(d*x)*tan(c) + 1))*tan(d*x)^5*tan(c)^5 + 30*a*b^3*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^
3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1))*tan(d*x)^5*tan(c)^5 - 75*a^4*d*x*tan(d*x
)^4*tan(c)^4 + 450*a^2*b^2*d*x*tan(d*x)^4*tan(c)^4 - 75*b^4*d*x*tan(d*x)^4*tan(c)^4 - 30*a^3*b*tan(d*x)^5*tan(
c)^5 + 45*a*b^3*tan(d*x)^5*tan(c)^5 + 150*a^3*b*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c
) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1))*tan(d*x)^4*tan(c)^4 - 150*a*b^3*log(4*(tan(c)^2
 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1))*
tan(d*x)^4*tan(c)^4 + 15*a^4*tan(d*x)^5*tan(c)^4 - 90*a^2*b^2*tan(d*x)^5*tan(c)^4 + 15*b^4*tan(d*x)^5*tan(c)^4
 + 15*a^4*tan(d*x)^4*tan(c)^5 - 90*a^2*b^2*tan(d*x)^4*tan(c)^5 + 15*b^4*tan(d*x)^4*tan(c)^5 + 150*a^4*d*x*tan(
d*x)^3*tan(c)^3 - 900*a^2*b^2*d*x*tan(d*x)^3*tan(c)^3 + 150*b^4*d*x*tan(d*x)^3*tan(c)^3 - 30*a^3*b*tan(d*x)^5*
tan(c)^3 + 30*a*b^3*tan(d*x)^5*tan(c)^3 + 90*a^3*b*tan(d*x)^4*tan(c)^4 - 165*a*b^3*tan(d*x)^4*tan(c)^4 - 30*a^
3*b*tan(d*x)^3*tan(c)^5 + 30*a*b^3*tan(d*x)^3*tan(c)^5 + 30*a^2*b^2*tan(d*x)^5*tan(c)^2 - 5*b^4*tan(d*x)^5*tan
(c)^2 - 300*a^3*b*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(
d*x)^2 - 2*tan(d*x)*tan(c) + 1))*tan(d*x)^3*tan(c)^3 + 300*a*b^3*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2
*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1))*tan(d*x)^3*tan(c)^3 - 60*a^4*t
an(d*x)^4*tan(c)^3 + 450*a^2*b^2*tan(d*x)^4*tan(c)^3 - 75*b^4*tan(d*x)^4*tan(c)^3 - 60*a^4*tan(d*x)^3*tan(c)^4
 + 450*a^2*b^2*tan(d*x)^3*tan(c)^4 - 75*b^4*tan(d*x)^3*tan(c)^4 + 30*a^2*b^2*tan(d*x)^2*tan(c)^5 - 5*b^4*tan(d
*x)^2*tan(c)^5 - 15*a*b^3*tan(d*x)^5*tan(c) - 150*a^4*d*x*tan(d*x)^2*tan(c)^2 + 900*a^2*b^2*d*x*tan(d*x)^2*tan
(c)^2 - 150*b^4*d*x*tan(d*x)^2*tan(c)^2 + 90*a^3*b*tan(d*x)^4*tan(c)^2 - 150*a*b^3*tan(d*x)^4*tan(c)^2 - 120*a
^3*b*tan(d*x)^3*tan(c)^3 + 180*a*b^3*tan(d*x)^3*tan(c)^3 + 90*a^3*b*tan(d*x)^2*tan(c)^4 - 150*a*b^3*tan(d*x)^2
*tan(c)^4 - 15*a*b^3*tan(d*x)*tan(c)^5 + 3*b^4*tan(d*x)^5 - 60*a^2*b^2*tan(d*x)^4*tan(c) + 25*b^4*tan(d*x)^4*t
an(c) + 300*a^3*b*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(
d*x)^2 - 2*tan(d*x)*tan(c) + 1))*tan(d*x)^2*tan(c)^2 - 300*a*b^3*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2
*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1))*tan(d*x)^2*tan(c)^2 + 90*a^4*t
an(d*x)^3*tan(c)^2 - 720*a^2*b^2*tan(d*x)^3*tan(c)^2 + 150*b^4*tan(d*x)^3*tan(c)^2 + 90*a^4*tan(d*x)^2*tan(c)^
3 - 720*a^2*b^2*tan(d*x)^2*tan(c)^3 + 150*b^4*tan(d*x)^2*tan(c)^3 - 60*a^2*b^2*tan(d*x)*tan(c)^4 + 25*b^4*tan(
d*x)*tan(c)^4 + 3*b^4*tan(c)^5 + 15*a*b^3*tan(d*x)^4 + 75*a^4*d*x*tan(d*x)*tan(c) - 450*a^2*b^2*d*x*tan(d*x)*t
an(c) + 75*b^4*d*x*tan(d*x)*tan(c) - 90*a^3*b*tan(d*x)^3*tan(c) + 150*a*b^3*tan(d*x)^3*tan(c) + 120*a^3*b*tan(
d*x)^2*tan(c)^2 - 180*a*b^3*tan(d*x)^2*tan(c)^2 - 90*a^3*b*tan(d*x)*tan(c)^3 + 150*a*b^3*tan(d*x)*tan(c)^3 + 1
5*a*b^3*tan(c)^4 + 30*a^2*b^2*tan(d*x)^3 - 5*b^4*tan(d*x)^3 - 150*a^3*b*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c
)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1))*tan(d*x)*tan(c) + 150*a
*b^3*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*ta
n(d*x)*tan(c) + 1))*tan(d*x)*tan(c) - 60*a^4*tan(d*x)^2*tan(c) + 450*a^2*b^2*tan(d*x)^2*tan(c) - 75*b^4*tan(d*
x)^2*tan(c) - 60*a^4*tan(d*x)*tan(c)^2 + 450*a^2*b^2*tan(d*x)*tan(c)^2 - 75*b^4*tan(d*x)*tan(c)^2 + 30*a^2*b^2
*tan(c)^3 - 5*b^4*tan(c)^3 - 15*a^4*d*x + 90*a^2*b^2*d*x - 15*b^4*d*x + 30*a^3*b*tan(d*x)^2 - 30*a*b^3*tan(d*x
)^2 - 90*a^3*b*tan(d*x)*tan(c) + 165*a*b^3*tan(d*x)*tan(c) + 30*a^3*b*tan(c)^2 - 30*a*b^3*tan(c)^2 + 30*a^3*b*
log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x
)*tan(c) + 1)) - 30*a*b^3*log(4*(tan(c)^2 + 1)/(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^
2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)) + 15*a^4*tan(d*x) - 90*a^2*b^2*tan(d*x) + 15*b^4*tan(d*x) + 15*a^4*ta
n(c) - 90*a^2*b^2*tan(c) + 15*b^4*tan(c) + 30*a^3*b - 45*a*b^3)/(d*tan(d*x)^5*tan(c)^5 - 5*d*tan(d*x)^4*tan(c)
^4 + 10*d*tan(d*x)^3*tan(c)^3 - 10*d*tan(d*x)^2*tan(c)^2 + 5*d*tan(d*x)*tan(c) - d)